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Abstract: We study asymptotic properties of the nonparametric maximum

likelihood estimator (NPMLE) of a distribution function based on partly

interval-censored data in which the exact values of some failure times are

observed in addition to interval-censored observations. It is shown that the

NPMLE converges weakly to a mean zero Gaussian process whose covariance

function is determined by a Fredholm integral equation. Simulations are

conducted to demonstrate that the NPMLE based on all the observations

substantially outperforms the empirical distribution function, using only the

fully observed observations, in terms of the mean square error. It is also

shown that the nonparametric bootstrap estimator of the distribution function

is first order consistent, which provides asymptotic justification for the use of

bootstrap to construct confidence bands for the unknown distribution function.
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1. Introduction and description of the data

Suppose time to event random variables, or failure times, T1, . . . , Tn are independent

and identically distributed as F0. If all the random variables are observable, then it is

well known that the nonparametric maximum likelihood estimator (NPMLE) of F0 is

the empirical distribution function and it is asymptotically efficient. However, in many

medical and reliability studies, observations are subject to censoring. The goal of this

paper is to study asymptotic properties of the NPMLE of F0 based on partly interval-

censored data in which some of the failure times are observed, but some of the failure

times are subject to interval censoring. More specifically, we consider the following two

cases.

(i) “Case 1” partly interval-censored data. For some subjects, the exact failure times

T1, . . . , Tn1 are observed. But for the remaining subjects, only the information pertaining

to their current status is available. That is, for the ith subject in this group, we only

know whether or not failure has occurred at the examination time Ui; so the observed

data is

(δi, Ui), i = n1 + 1, . . . , n,

where δi = 1 if the unknown failure time Ti ≤ Ui and δi = 0 otherwise. Note that this

censorship model is different from the doubly-censored data studied by Chang and Yang

(1987), Chang (1990) and Gu and Zhang (1993).

(ii) General partly interval-censored data. Again, some of the exact failure times are

observed, but some of the failure times are interval-censored. Interval-censored data arises

when a failure time T is not observable, but is only known to be bracketed between two

examination times. We now describe the interval-censored data we consider.

Suppose there are m potential examination times U1 < U2 < · · · < Um. Let U0 = 0

and Um+1 = ∞, and let δk = 1[Uk−1<T≤Uk], k = 1, . . . ,m,m + 1. That is, δk is an

indicator function specifying which interval determined by (U1, U2, . . . , Um) contains the

unobservable failure time T . Thus δk takes values 0 or 1 and
∑m+1
k=1 δk = 1. Let ∆ =
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(δ1, . . . , δm+1). If δk = 1, T is known to be bracketed between Uk−1 and Uk and all the

other δ’s are zero. However, examination times may be censored. For example, if the

ith failure time is bracketed in (Umi−1,i, Umi,i) where Umi−1,i is the last examination time

before the failure and Umi,i is the first examination time after the failure has occurred,

then it may no longer be necessary to conduct further examinations. So the effective

observations are

(∆i, Umi−1,i, Umi,i), i = n1 + 1, . . . , n,

Notice that mi may differ across subjects.

Partly interval-censored data arise frequently in practice. In estimating the

distribution of onset age of chronic diseases, age at onset is known for some affected

individuals in the study. However, for others, age at onset is unknown and only current

age is available. Then age at onset is less than current age. For an unaffected and

susceptible individual, age at onset is greater than current age. This gives rise to the

“case 1” partly interval-censored data. Examples of such data can be found in Risch

(1983) and Tang, Maestre, Tsai, Liu, Feng, Chung, Chung, Schofield, Stern, Tycko, and

Mayeux (1995).

General partly interval-censored data arise often in follow-up studies. An example

of such data is provided by the Framingham Heart Disease Study; see Odell, Anderson

and D’Agostino (1992) for a description. In this study, times of the first occurrence

of subcategory angina pectoris in coronary heart disease patients are of interest. For

some patients, time of the first occurrence of subcategory angina pectoris is recorded

exactly. But for others, time is recorded only between two clinical examinations. Another

example of such data is provided by the study on incidence of proteinuria in insulin-

dependent diabetic patients in Denmark; see Enevoldsen, Johnsen, Kreiner, Nerup and

Deckrt (1986) for a detailed description.

Turnbull (1976) described a general scheme of incomplete failure time data and derived

self-consistency equations for computing the maximum likelihood estimator of the survival

function. However, theoretical properties of Turnbull’s estimator have not been studied

3



under an unknown continuous survival function except in some important special cases,

such as right censoring. It does not seem likely that one can establish properties of the

NPMLE under Turnbull’s general censoring scheme. Note that both right-censored data

and interval-censored data can be regarded as special cases of Turnbull’s general censored

data. The Kaplan-Meier estimator for right-censored data is asymptotically normal with

n1/2 rate of convergence (Breslow and Crowley, (1974)). However, the NPMLE with

interval-censored data has only n1/3-rate of convergence and its limiting distribution is

the argmax of the standard two-sided Brownian motion minus parabola (Groeneboom

(1991) and Groeneboom and Wellner, (1992)). Large sample properties of the NPMLE

based on partly interval-censored data appear to be unknown.

In this paper, we show that the NPMLE based on either the “case 1” partly interval-

censored data or the general partly interval-censored data converges weakly to a Gaussian

process. We also show that the nonparametric bootstrap estimator of the distribution

function is first order consistent, which provides asymptotic justification for the use of the

bootstrap to construct confidence bands for the unknown distribution function.

2. Definition and uniqueness of the NPMLE

Assume that the failure time and examination times are independent and that the

distribution of the examination times is independent of the distribution of the failure

time. The likelihood function for general partly interval-censored data is proportional to

Ln(F ) =
n1∏
i=1

dF (Ti)
n∏

i=n1+1

[F (Umi,i)− F (Umi−1,i)], (2.1)

where dF (t) = F (t) − F (t−) is the mass that F puts at t. The NPMLE F̂n is then the

maximizer of Ln(F ) in the class of distribution functions. In the special case of “case 1”

partly interval-censored data, the likelihood function simplifies to

Ln(F ) =
n1∏
i=1

dF (Ti)
n∏

i=n1+1

F (Ui)
δi(1− F (Ui))

1−δi .
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For any finite sample size n, F̂n is determined only at the observed failure times

Ti, 1 ≤ i ≤ n1, and at the examination times (Umi−1,i, Umi,i), 1 ≤ i ≤ n2, where n2 = n−n1

(only these values of F enter the likelihood function). Turnbull (1976) showed that F̂n is a

discrete distribution function which puts positive mass only at the observed failure times

and examination times. To see that F̂n is uniquely determined at the observation times,

we divide the censored data part into three types: (a) left censoring time denoted by Lj, so

the corresponding failure time Tj satisfies 0 < Tj ≤ Lj, 1 ≤ j ≤ n21; (b) interval censoring

time (Uj, Vj), so the corresponding failure time Tj satisfies Uj < Tj ≤ Vj, 1 ≤ j ≤ n22;

and (c) right censoring time Rj, the corresponding failure time Tj satisfies Tj > Rj, 1 ≤

j ≤ n23. The size of censored data n2 is n21 +n22 +n23. The log-likelihood function given

in (2.1) can be rewritten as

logLn(F ) =
n1∑
i=1

log(F (T(i))− F (T(i−1))) +
n21∑
j=1

logF (Lj) +
n22∑
j=1

log(F (Vj)− F (Uj))

+
n23∑
j=1

log(1− F (Rj)),

where T(i)’s are the ordered values of T1, . . . , Tn1 and T(0) = 0. Clearly, we can let F (T(0)) =

F (0) = 0. Let D = (Y(1), . . . , Y(m)) be the collection of the exact failure times and the

three types of censoring times with Y(1) ≤ · · · ≤ Y(m). Without loss of generality, we

can assume that Y(1) corresponds to a value in the Ti’s, Lj’s, or Vj’s. Otherwise, if

Y(1) corresponds to a Uj or a Rj, for the distribution function F to maximize logLn,

we must have F (Y(1)) = 0. Thus we can take Y(1) out of D. Similarly, we can assume

that the largest value Y(m) in D corresponds to a Uj or Rj, because if Y(m) corresponds

to a Ti, Lj, or Vj, we must have F (Y(m)) = 1 and can delete this Y(m) from D. Let

sj = F (Y(j)). Then the log-likelihood can be represented as a function of s ≡ (s1, . . . , sm).

The problem of finding F̂n becomes that of maximizing logLn(s) over the convex set

S = {(s1, . . . , sm) : 0 < s1 ≤ · · · ≤ sm < 1}. It can be verified that logL is concave in

S. By an argument analogous to Proposition 1.3 of Gronenboom and Wellner (1992) for

the uniqueness of the NPMLE with interval-censored data, the solution to the present

maximization problem is unique. Therefore, the NPMLE F̂n is uniquely determined at
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the observation times.

In the above, we assumed that n2k ≥ 1, k = 1, 2, 3. For a fixed n2, any one or two

of n21, n22 and n23 might be zero. For example, if n12 = 0, then there is no left-censored

data, and the corresponding term in logLn does not exist. The uniqueness of F̂n is this

simpler case can be established similarly.

3. Asymptotic distribution of the NPMLE

Suppose that the distribution function F0 of the failure time T is continuous. Then it can

be shown using the method of Van der Vaart and Wellner (1992) that

sup |F̂n(t)− F0(t)| →a.s. 0 as n1 →∞.

These authors considered the consistency of the NPMLE when part of the data is

observed and part is from a mixture density with the unknown distribution as the mixing

distribution. Their proof can be adapted to the present situation. If it is further assumed

that the distribution function of the examination times is continuous, then consistency

holds as min{n1, n2} → ∞. When n1 = 0, the uniform consistency of F̂n is proved in

Groeneboom and Wellner (1992). We omit the proof of consistency and concentrate on

the asymptotic distribution of F̂n.

The first key assumption is that the number of exact observations is not negligible in

the following sense.

Assumption (A1): n1/n→ α1, as n→∞ with 0 < α1.

This assumption is crucial for us to obtain the n1/2-rate of convergence for F̂n. If

n1/n → 0 as n → ∞, then the rate of convergence of F̂n would be slower than n1/2. In

particular if n1 = 0, the rate of convergence is n1/3, see Groeneboom and Wellner (1992).

Let D[0,∞) be the class of bounded right continuous functions with left limits on

[0,∞), equipped with the supremum norm. Convergence in distribution (denoted as⇒D)
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below is according to the definition of Hoffmann-Jørgensen; see for example, Van der

Vaart and Wellner (1996) for a description.

We state the results on F̂n with “case 1” interval-censored data and with general partly

interval-censored data separately, since in the former case, the conditions are weaker.

Let α2 = 1 − α1. The following are needed in Theorem 3.1. Define a linear operator

Ṡ0 : D[0,∞)→ D[0,∞) by

Ṡ0 = α1I + α2K,

where I is the identity operator and where, for any h ∈ D[0,∞), K is defined by

Kh(t) = E

{
F0(U1 ∧ t)− F0(U1)F0(t)

F0(U1)(1− F0(U1))
h(U1)

}
.

Let ξ1(x; t) as a function of t be the solution to the integral equation Ṡ0h(t) = 1[x≤t]−F0(t),

and let ξ2(δ, u; t) as a function of t be the solution to the integral equation

Ṡ0h(t) = δ
F0(u ∧ t)
F0(t)

+ (1− δ)F0(u)− F0(v ∧ t)
1− F0(u)

.

Theorem 3.1. (“Case 1” partly interval-censored data.) Suppose that (A1) holds and

that F0 is continuous. Then

(i)

n1/2(F̂n − F0)⇒D Z1,

where Z1 is a Gaussian process in D[0,∞) with mean zero and a variance that achieves

the information lower bound for the estimation of F0.

(ii) The covariance function of Z1 is given by

Cov(Z1(s), Z1(t)) = α1Cov[ξ1(T1; s), ξ1(T1; t)] + α2Cov[ξ2(δ1, U1; s), ξ2(δ1, U1; t)],

where the first covariance is calculated with respect to the distribution of T1, the second is

with respect to the distribution of (δ1, U1).

We now give sufficient conditions under which the NPMLE F̂n in the general case

converges in distribution to a Gaussian process.
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Assumption (A2): The distribution function F0 is continuous and strictly increasing.

Assumption (A3): The joint distribution function G(u1, . . . , um) of (U1, . . . , Um) is

continuous. Furthermore, there exists a positive number η0 > 0 such that

P (Uk+1 − Uk ≥ η0) = 1, k = 1, . . . ,m− 1.

Assumption (A3)∗: (U1, . . . , Um) is a vector of discrete random variables with finitely

many support points.

Assumption (A3) assumes that there is a positive separation time between any two

adjacent examination times. We conjecture that Theorem 3.2 below continues to hold

without this assumption, but have not been able to prove this. The point of difficulty is

discussed in Remark 6.1 of section 4.

Before stating Theorem 3.2, we first define several expressions needed to describe the

covariance structure of the limiting Gaussian process of the NPMLE for the case of m = 2.

These expressions can be generalized to the case of general m. Denote (U1, U2) by (U, V ).

Define a linear operator Ṡ0 : D[0,∞)→ D[0,∞) by

Ṡ0 = α1I + α2K, (3.1)

where I is the identity operator and where for any h ∈ D[0,∞), K is defined by

Kh(t) = E

{
F0(U ∧ t)
F0(U)

h(U) +
F0(V ∧ t)− F0(U ∧ t)

F0(V )− F0(U)
(h(V )− h(U))− F0(t)− F0(V ∧ t)

1− F0(V )
h(V )

}
.

Let ψ1(x; t) as a function of t be the solution to the integral equation Ṡ0h(t) = 1[x≤t]−F0(t),

and let ψ2(δ1, δ2, u, v; t) as a function of t be the solution to the integral equation

Ṡ0h(t) = δ1
F0(u ∧ t)
F0(u)

+ δ2
F0(v ∧ t)− F0(u ∧ t)

F0(v)− F0(u)
+ (1− δ1 − δ2)

F0(t)− F0(v ∧ t)
1− F0(v)

.

Theorem 3.2. (General partly interval-censored data.) Suppose that: (a) Conditions

(A1) and (A2) hold; (b) either (A3) or (A3)∗ holds. Then

(i)

n1/2(F̂n − F0)⇒D Z2,
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where Z2 is a Gaussian process in D[0,∞) with mean zero and a variance that achieves

the information lower bound for the estimation of F0.

(ii) When m = 2, the covariance function of Z2 is given by

Cov(Z2(s), Z2(t)) = α1Cov[ψ1(T1; s), ψ1(T1; t)]+α2Cov[ψ2(δ1, δ2, U, V ; s), ψ2(δ1, δ2, U, V ; t)],

where the first covariance is calculated with respect to the distribution of T1, the second is

with respect to the distribution of (δ1, δ2, U, V ).

Notice that the conditions of Theorem 3.1 are weaker than those of Theorem 3.2. In

particular, there is no restriction on the distribution of the examination time.

The covariance functions of Z1 and Z2 in the above two theorems are not expressible

in closed forms. They are determined by two Fredholm integral equations which do not

appear to have explicit solutions. Therefore, Theorems 3.1 and 3.2 can not be directly

used to construct pointwise confidence limits or confidence bands for F0.

One way to estimate the covariance of F̂n is to use the inverse of the observed

information matrix. The observed information matrix is computed as the negative second

derivative of the log-likelihood with respect to the values of F̂n at its jump points (note

that some examination times may not be jump points of F̂n). Following the discussion in

Section 5 of Vardi and Zhang (1992), this method provides a consistent estimator of the

covariance of F̂n, which follows from the continuity of the inverse of the score operator

in a neighborhood of F0 proved in Section 6. See also Murphy (1995) for a discussion of

the use of this method to estimate the covariance of the NPMLE in the frailty model.

Thus pointwise confidence limits for F0 can be obtained from this covariance estimator.

However, knowing the covariance of F̂n is not enough for constructing confidence bands

for F0. One approach for constructing confidence bands is to use the bootstrap. Theorems

3.1 and 3.2 provide a starting point to verify that the nonparametric bootstrap described

below is first order consistent.

Let Pn1 be the empirical measure of the exact observations T1, . . . , Tn1 , let Pn2 be the

empirical measure of the interval-censored observations (Umi−1,i, Umi,i), 1 ≤ i ≤ n2, let
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T ∗i , 1 ≤ i ≤ n1, be a bootstrap sample from Pn1 , and let (U∗mi−1,i, U
∗
mi,i

), 1 ≤ i ≤ n2, be a

bootstrap sample from Pn2 , drawn independently of T ∗i , 1 ≤ i ≤ n1. Define the bootstrap

NPMLE to be the F̂ ∗n which maximizes

L∗n(F ) =
n1∏
i=1

dF (T ∗i )
n∏

i=n1+1

[F (U∗mi,i)− F (U∗mi−1,i)]

over the class of distribution functions.

Theorem 3.3. (i) Under the conditions of Theorem 3.1,

n1/2(F̂ ∗n − F̂n)⇒D Z1 in probability,

where Z1 is the limiting process given in Theorem 3.1.

(ii) Under the conditions of Theorem 3.2,

n1/2(F̂ ∗n − F̂n)⇒D Z2 in probability,

where Z2 is the limiting process given in Theorem 3.2.

Theorem 3.3 justifies the use of bootstrap to construct confidence bands for F0.

In Theorems 3.1 and 3.2, it is assumed that F0 is continuous. It is sometimes of interest

to treat the failure times as having a discrete distribution F0 with finitely many known

support points, say (τ1, . . . , τd). Then the derivation of the asymptotic distribution of the

maximum likelihood estimator becomes a standard finite dimensional parametric problem.

Classical distributional theory on maximum likelihood estimators applies. Specifically,

let pj = P (T ≤ τj) and let p̂j be the corresponding maximum likelihood estimator,

j = 1, . . . , d. Let p = (p1, . . . , pd)
′ and p̂ = (p̂1, . . . , p̂d)

′. Suppose (A1) holds. Then with

either the “case 1” or the general partly interval censored data, and with no restriction

on the nature of the distribution function G,

n1/2(p̂− p)→d N(0,Σ),

where Σ is the Cramér-Rao lower bound, consistently estimated by the inverse of the

observed Fisher information matrix.
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4. Self-consistency equations

Turnbull (1976) showed that the nonparametric maximum likelihood estimator satisfies

the self-consistency equations which are exactly the score equations defined appropriately.

In this section, we give a different derivation of the self-consistency equations. The main

purpose is to write the self-consistency equations in terms of the present notation. This

will be useful in Section 6 where the proofs of Theorems 3.1, 3.2 and 3.3 are based on the

equations given below.

If all the failure times could be observed, the self-consistency estimator F̂n is simply

the empirical distribution function

Fn(t) =
n1

n
Fn1(t) +

n2

n
Fn2(t),

where Fn1 is the empirical distribution function of the observable T1, . . . , Tn1 , and Fn2

is the empirical distribution function of the unobservable Tn1+1, . . . , Tn. When the data

is subject to censoring, F̂n can be obtained by taking the conditional expectation of Fn

given the observed data under the probability measure induced by F̂n itself (Efron, 1967).

That is,

F̂n(t) = E
F̂n

[Fn(t) | Ti, Umj−1,j, Umj ,j, i = 1, . . . , n1, j = n1 + 1, . . . , n] (4.1)

=
n1

n
Fn1(t) +

n2

n
E
F̂n

[Fn2(t) | Umj−1,j, Umj ,j, j = n1 + 1, . . . , n]

=
n1

n
Fn1(t) +

1

n

n2∑
j=1

 F̂n(Umj ,j ∧ t)− F̂n(Umj−1,j ∧ t)
F̂n(Umj ,j)− F̂n(Umj−1,j)

 .
For “case 1” partly interval-censored data, the self-consistency equation simplifies to

F̂n(t) =
n1

n
Fn1(t) +

1

n

n2∑
j=1

{
δj
F̂n(Uj ∧ t)
F̂n(Uj)

+ (1− δj)
F̂n(t)− F̂n(Uj ∧ t)

1− F̂n(Uj)

}
. (4.2)

Equation (4.1) or (4.2) immediately give an iterative algorithm to compute F̂n, which

can also be viewed as an EM algorithm (Dempster, Laird and Rubin, (1977)). This

algorithm is easy to implement. A faster algorithm is the hybrid algorithm proposed

by Wellner and Zhan (1997) which combines the EM algorithm and the iterative convex
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minorant algorithm. For a detailed description of the iterative convex minorant algorithm,

see Groeneboom and Wellner (1992).

5. Efficiency gain by using censored observations

A referee raises the question of how much efficiency is gained by the NPMLE using all

the observations over the empirical distribution function using only the fully observed

observations, and how the gain in efficiency depends on α1, the proportion of the fully

observed observations. It appears difficult to analytically quantify the improvement in

the efficiency of the NPMLE and how it depends on α1, because the covariance function

of the NPMLE is highly implicit. Therefore, I carried out two sets of simulations with

“case 1” and “case 2” partly-interval censored data.

In the first set of simulations with “case 1” partly interval-censored observations, four

different distributions for F0 are used. These distributions are: uniform[0, 1]; exponential

with mean 0.5; Weibull distribution with shape parameter 1.4 and scale parameter 0.55

(with hazard function 1.4 × 0.55−1.4t0.4 = 3.23 t0.4); and Weibull distribution with shape

parameter 0.7 and scale parameter 0.40 ( with hazard function 0.7 × 0.4−0.7t−0.3 =

1.33 t−0.3). The first Weibull distribution has an increasing hazard function, while the

second Weibull distribution has a decreasing hazard function. The parameters are set so

that all four distributions have mean 0.5. The distribution of the examination time is

uniform [0, 1] in all four cases.

In the second set of simulations with “case 2” partly interval-censored data, the

four generating distributions are: uniform[0, 4]; exponential with mean 2; Weibull

distribution with shape parameter 1.5 and scale parameter 2.25 (with hazard function

1.5 × 2.25−1.5t0.5 = 0.44 t0.5); and Weibull distribution with shape parameter 0.7 and

scale parameter 1.65 (with hazard function 0.7 × 1.65−0.7t−0.3 = 0.49 t−0.3). Again,

the two Weibull distributions have increasing and decreasing hazards, respectively. The

parameters are specified so that all the distributions have mean 2. The distribution of the
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first examination time U1 is uniform [0, 1]; and after the realization of U1 is generated,

the second examination time U2 is obtained by adding a random number generated from

uniform [10−6, 1] to this realization of U1. The number 10−6 (instead of 0) is used here so

that the conditions of Theorem 3.2 are satisfied. However, simulations (not shown here)

suggest that the numerical difference in the NPMLE and the mean square error between

using uniform [10−6, 1] and uniform [0, 1] is negligible.

The total sample size n = n1 + n2 is 100, and the number of replications is 500 for

every simulation model. Five different combinations of the values of (n1, n2) are used in

the simulations with the ratio α1 (defined to be n1/n) equal to 0.1, 0.3, 0.5, 0.7 and 0.9.

The mean square errors (MSE) multiplied by 104 of the empirical distribution function

Fn using only the fully observed data and the NPMLE F̂n along with their ratios are

presented in Tables 1 and 2. The mean square error is defined to be the average of the

squared differences between the estimator and the true distribution at the observations.

It is seen from Tables 1 and 2 that the reduction in mean square error of the NPMLE

F̂n using all the observations is substantial for α1 = 0.1 to 0.7. For these α1 values, the

relative efficiency of F̂n with respect to the empirical distribution function Fn (measured

by the ratio of the mean square error) ranges from approximately 1.2 to about 8.2. Even

in the case when α1 = 0.9, there is a small but appreciable reduction in the mean square

error in the NPMLE. Therefore, the results presented in Tables 1 and 2 demonstrate the

advantage of using the censored observations in addition to the fully observed observations,

at least for the models and sample sizes used in simulations. The efficiency gain increases

as α1 decreases, as expected. It is also seen from Tables 1 and 2 that the increase in the

mean square error of the NPMLE is small to moderate when n1 gets smaller for the fixed

total sample size n. This suggests that the performance of the NPMLE is stable for a

wide range of the values of α1 and a fixed n.
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Table 1. MSE ×104: Case 1 partly interval censoring

(n1, n2) (10, 90) (30, 70) (50, 50) (70, 30) (90, 10)

Uniform Fn 116.27 30.95 19.48 12.58 9.12

[0, 1] NPMLE 14.16 14.07 12.08 10.44 8.60

Ratio 8.21 2.20 1.61 1.20 1.06

Exponential Fn 98.16 31.73 19.33 11.73 8.19

mean=0.5 NPMLE 16.24 14.12 13.07 10.80 7.88

Ratio 6.04 2.25 1.48 1.09 1.04

Weibull Fn 120.19 31.28 17.14 11.81 10.10

shape= 1.4 NPMLE 15.89 12.47 11.65 9.51 9.80

scale= 0.55 Ratio 7.56 2.51 1.47 1.24 1.03

Weibull Fn 108.70 30.67 18.01 12.73 8.97

shape= 0.7 NPMLE 18.50 15.24 13.32 10.83 8.77

scale= 0.40 Ratio 5.88 2.01 1.35 1.18 1.02
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Table 2. MSE ×104: “Case 2” partly interval censoring

(n1, n2) (10, 90) (30, 70) (50, 50) (70, 30) (90, 10)

Uniform Fn 109.51 31.20 18.87 11.77 10.21

[0, 4] NPMLE 14.10 11.53 10.97 9.47 9.41

Ratio 7.77 2.71 1.72 1.24 1.09

Exponential Fn 105.47 29.63 17.55 14.35 9.90

mean= 2 NPMLE 15.94 14.49 12.09 11.46 9.59

Ratio 6.61 2.04 1.45 1.25 1.03

Weibull Fn 94.09 31.71 19.25 11.62 9.98

shape= 1.5 NPMLE 12.56 11.82 11.07 9.35 9.16

scale= 2.25 Ratio 7.49 2.68 1.74 1.24 1.09

Weibull Fn 109.98 30.34 19.51 14.86 10.27

shape= 0.7 NPMLE 18.95 15.62 14.08 12.08 9.85

scale= 1.65 Ratio 5.70 1.94 1.38 1.23 1.04
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6. Proofs

In this section, we prove Theorems 3.2 and 3.3 for the case m = 2. It can be verified

that the argument works for general m; the only complication is notational. In proving

Theorem 3.2, we use the infinite-dimensional M-estimator theorem of Van der Vaart (1995)

which is briefly described below. The structures of the two proofs are similar, the main

difference is in showing continuous invertibility of Ṡ0 defined in Theorem 3.1 or 3.2. The

proof of Theorem 3.3 resembles the proof of Wellner and Zhan (1996), Theorem 3.1, on

the asymptotic distribution of the bootstrap infinite-dimensional M-estimators (Wellner

and Zhan call them Z-estimators). Since Theorem 3.1 of Wellner and Zhan (1996) is

stated for a single random sample and there are two independent samples in the present

situation, we provide a sketch of the proof of Theorem 3.3, including consistency of the

bootstrap estimator. It should be noted that the consistency of the bootstrap estimator

is the first step towards asymptotic normality. For example, consistency is an important

condition in Theorem 3.1 of Wellner and Zhan (1996).

The proof of Theorem 3.1 is omitted, because it is similar to that of of Theorem 3.2. A

referee points out that the proofs in Gu and Zhang (1992) for the asymptotic normality of

the NPMLE of F0 based on double censored data can be applied to Theorem 3.1 because

of its close connection with the “case 1” partly interval-censored data.

6.1. Proof of Theorem 3.2. We only prove the theorem when m = 2. To

simplify the notation, let U = U1 (the first examination time) and let V = U2 (the

second examination time). Recall that δ1 = 1[T≤U ], δ2 = 1[U<T≤V ] and δ3 = 1 − δ1 − δ2.

Set

φF (δ1, δ2, u, v; t) = δ1
F (u ∧ t)
F (u)

+ δ2
F (v ∧ t)− F (u ∧ t)

F (v)− F (u)
+ δ3

F (t)− F (v ∧ t)
1− F (v)

, (6.1)

Sn(F )(t) = F (t)− n1

n
Fn1(t)− n2

n
Pn2φF (δ1, δ2, u, v; t). (6.2)
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Recall that Pn2 is the empirical measure of (δ1i, δ2i, Ui, Vi), i = n1 + 1, . . . , n. The self-

consistency equation (4.1) for F̂n can be rewritten as

Sn(F̂n) = 0.

The limiting version of Sn(F ) is:

S(F )(t) = F (t)− α1F0(t)− α2PφF (δ1, δ2, U, V ; t), (6.3)

where P is the probability distribution of (δ11, δ21, U1, V1) and α1 = 1 − α2. Notice that

S(F0) ≡ 0.

For any f ∈ D[0,∞), denote the supremum norm by ||f || = sup0≤t<∞ |f(t)|. Following

the general theorem of Van der Vaart (1992) on asymptotics of infinite-dimensional M-

estimators, suppose we can prove that:

(i) n1/2(Sn − S)(F0)⇒D Z0, where Z0 is a tight random map in D[0,∞);

(ii) ||n1/2(Sn − S)(F̂n)− n1/2(Sn − S)(F0)|| = op(1 + ‖F̂n − F0‖);

(iii) There exists a continuously invertible linear map Ṡ0 such that

||S(F )− S(F0)− Ṡ0(F − F0)|| = o(‖F − F0‖) as ||F − F0|| → 0.

Then

n1/2(F̂n − F0) = Ṡ−1
0 n1/2(Sn − S)(F0) + op(1)⇒D −Ṡ−1

0 Z0.

We first prove (ii) and (iii), and then explain that (i) follows analogous arguments to

those in proving (ii).

Proof of (ii). We have

(Sn − S)(F̂n)− (Sn − S)(F0) = −n2

n
(Pn2 − P ){φ

F̂n
(δ1, δ2, u, v; t)− φF0(δ1, δ2, u, v; t)}

= −n2

n
(II1n(t) + II2n(t) + II3n(t)),

where

II1n(t) = (Pn2 − P )δ1

{
F̂n(u ∧ t)
F̂n(u)

− F0(u ∧ t)
F0(u)

}
,
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II2n(t) = (Pn2 − P )δ2

{
F̂n(v ∧ t)− F̂n(u ∧ t)

F̂n(v)− F̂n(u)
− F0(v ∧ t)− F0(u ∧ t)

F0(v)− F0(u)

}
,

and

II3n(t) = (Pn2 − P )δ3

{
F̂n(t)− F̂n(v ∧ t)

1− F̂n(v)
− F0(t)− F0(v ∧ t)

1− F0(v)

}
.

That the terms II1n and II3n are op(n
−1/2) uniformly in t follows from Pollard (1989),

Theorem 4.4, based on the following facts: (a) F (t)/F (u) has total variation bounded by

2 on u > t for any t and any F ; (b) the class of uniformly bounded variation functions is

Donsker; see for example, Van der Vaart and Wellner (1996), Theorem 2.7.5, page 159.

For II2n(t), the assumptions (A2) and (A3) and the uniform convergence of F̂n ensure

that F̂n(v)− F̂n(u) ≥ λ0 for some λ0 > 0 with probability one for all n sufficiently large.

Thus it is clear that for any t and F , the functions

F̂n(v ∧ t)− F̂n(u ∧ t)
F (v)− F (u)

= 1[v≤t] +
F̂n(t)− F̂n(u)

F̂n(v)− F̂n(u)
1[u<t<v]

are of bounded uniform sectional variation and hence are in a Donsker class. (A bivariate

function f(x, y) on [0,∞)× [0,∞) is said to be of bounded uniform sectional variation if

the variations of all sections and of the function itself, are uniformly bounded.) See, for

example, Van der Laan (1996), Example 1.2. So again, it can be shown similar to II1n(t)

that

sup
0≤t<∞

|II2n(t)| = op(n
−1/2).

This completes the proof of (ii).

Remark 6.1. For the proof of Theorem 3.2, assumption (A3) is needed only to show

that the class of functions{
F (t)− F (u)

F (v)− F (u)
1[u<t<v] : t ∈ [0,∞), F is a distribution function

}

is a Donsker class. At present, we are not able to verify that this class is Donsker without

assumption (A3).

Proof of (iii). Note that in proving (iii), we only need to consider F satisfying ||F −F0|| =

o(1). For such a distribution function F , let QF be the product of probability measures
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induced by F and G. (Recall that G is the joint distribution of (U, V )). Define a linear

operator AF

AFh(t′, u, v) = EF (h|δ1, δ2, u, v), h ∈ L2(F ),

where the conditional expectation is taken under QF . Observe that AFh is a function of

(t′, u, v) since δ1 = 1[t′≤u] and δ2 = 1[u<t′≤v]. (t′ will be a dummy variable in the integrals

below and it can also be thought of as the unobservable failure time.) Let ht(x) = 1[0,t](x).

By the definition of φF given in (6.1), we have

AFht(t
′, u, v) = φF (δ1, δ2, u, v; t).

This also follows directly from the fact that the score for the observed data is equal to

the conditional expectation of the score for the complete data given the observed data.

The operator AF maps L2(F ) functions of t′ to L2(QF ) functions of (x, u, v). Its adjoint

A∗F maps L2(QF ) functions to L2(F ) functions and can be expressed as

A∗F b(t
′) = EF (b|T = t′) =

∫
b(t′, u, v)dG(u, v)

for any b ∈ L2(QF ) (Bickel, Klaassen, Ritov and Wellner (1993), pages 271-272, or

Groeneboom and Wellner (1992), pages 8 and 9). In particular, we have

A∗FAFh(t′) =
∫
AFh(t′, u, v)dG(u, v).

Furthermore, by Fubini’s theorem, we have

∫
φF (δ1, δ2, u, v; t)dQF =

∫
AFht(t

′, u, v)dG(u, v)dF (t′) = F (t)

and ∫
(AFht − AF0ht)(t

′, u, v)dG(u, v)d(F − F0)(t′) = o(‖F − F0‖).

These two equations can be verified straightforwardly based on the identity

∫
φF (δ1, δ2, u, v; t)dF (t′) = F (t)
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for any (u, v). Therefore,

S(F )(t)− S(F0)(t)

= F (t)− α1F0(t)− α2

∫
φF (δ1, δ2, u, v; t)dG(u, v)dF0(t′)

= α1(F (t)− F0(t)) + α2

∫
AFht(t

′, u, v)dG(u, v)d(F − F0)(t′)

= α1(F (t)− F0(t)) + α2

∫
AF0ht(t

′, u, v)dG(u, v)d(F − F0)(t′) + o(‖F − F0‖)

= α1(F (t)− F0(t)) + α2

∫
A∗F0

AF0ht(t
′)d(F − F0)(t′) + o(‖F − F0‖)

= α1

∫
(I +

α2

α1

A∗F0
AF0)ht(t

′)d(F − F0)(t′) + o(‖F − F0‖)

= Ṡ0(F − F0)(t) + o(‖F − F0‖),

where Ṡ0 is defined by (3.1).

We need to show that Ṡ0 is continuously invertible. Let H be the class of functions of

uniformly bounded variation. Then I + (α1/α2)A∗F0
AF0 : H → H and Ṡ0 : H → H and

clearly ht(t
′) = 1[0,t](t

′) ∈ H. From the proof of Theorem 3.3 of Van der Vaart (1994), to

show that Ṡ0 is continuously invertible it suffices to show that I + (α1/α2)A∗F0
AF0 is one

to one and that A∗F0
AF0 is compact (hence I + (α1/α2)A∗F0

AF0 is continuously invertible).

Consider two cases corresponding to assumption (b) of Theorem 3.2.

Case 1. G is continuous. Then the operator I + (α1/α2)A∗F0
AF0 is one to one follows

from Lemma 3.2 of Van der Vaart (1994), by the fact that A∗F0
AF0 is a self-adjoint, positive

definite operator on L2(F0) and hence the eigenvalues of A∗F0
AF0 are not less than 1. To

see that A∗F0
AF0 is compact, let hm be a sequence in H. We have

A∗F0
AF0hm(t′)

=
∫ {

1[t′≤u]

∫ u
0 hmdF0

F0(u)
+ 1[u<t′≤v]

∫ v
0 hmdF0 −

∫ u
0 hmdF0

F0(v)− F0(u)
+ 1[t′>v]

∫
hmdF0 −

∫ v
0 hmdF0

1− F0(v)

}
dG(u, v).

By Helly’s selection theorem, we can find a subsequence hm′ of hm that converges at

every continuity point (since hm has uniformly bounded variation). By the dominated

convergence theorem and the continuity of F0 and G, A∗F0
AF0hm′(t

′) converges for every

t′.
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Case 2. G is discrete with finitely many mass points. Then it is clear that A∗F0
AF0

reduces to a finite dimensional self-adjoint operator. Thus it follows that it is compact

and that I + (α1/α2)A∗F0
AF0 is one to one. This completes the proof of (iii).

Proof of (i). Since

Sn(F0)(t)− S(F0)(t) =
n1

n
(F0(t)− Fn1(t))− n2

n
(Pn2 − P )φF0(δ1, δ2, u, v; t),

we only need to show

n1/2(Pn2 − P )φF0(δ1, δ2, u, v; t)

converges in distribution in D[0,∞). This follows since the class of functions

φF0(δ1, δ2, u, v; t), 0 ≤ t < ∞, is a Donsker class using arguments similar to those in

the proof of (ii).

Furthermore, it follows from the general result of Van der Vaart (1995) that the

NPMLE F̂n is regular and asymptotically efficient.

We now identify the covariance function of Z1. The proofs of (i), (ii) and (iii) imply

that

Ṡ0(F̂n − F0)(t) = −Sn(F0)(t) + op(n
−1/2).

Since Ṡ0 is continuously invertible, we have

(F̂n − F0)(t) = −Ṡ−1

0 Sn(F0)(t) + op(n
−1/2).

Let a(x; t) = 1[x≤t] − F0(t). By Fubini’s theorem we have

Ṡ
−1

0 Sn(F0)(t) =
n1

n
(Pn1 − P1)[Ṡ

−1

0 a(·; t)] +
n2

n
(Pn2 − P2)[Ṡ

−1

0 φF0(·; t)].

Therefore, the covariance function of Z1 is given as in Theorem 3.2. This completes the

proof of Theorem 3.2. 2

6.2. Proof of Theorem 3.3. We only prove part (ii) of this theorem. The proof

of (i) is similar and is omitted. As in (4.1),

F̂ ∗n(t) =
n1

n
F ∗n1

(t) +
n2

n
P ∗n2

φ
F̂ ∗n

(t), (6.4)
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where φF is defined by equation (6.1). We first show that

sup
0≤t<∞

|F̂ ∗n(t)− F0(t)| → 0, as n→∞ (6.5)

almost surely with respect to the underlying probability measure and the bootstrap

measure. By the bootstrapping Law of Large Numbers (Giné and Zinn (1990), Theorem

2.6), we can find a subsequence n′ of n such that F ∗n′1
converges uniformly to F0

almost surely and P ∗n′2
converges uniformly to P2 almost surely. On the other hand,

by Helly’s selection theorem, there exists a subsequence of F̂ ∗n that converges vaguely to

a subdistribution function F ∗. Take a common subsequence, and take limit on both sides

of equation (6.4) to get

F ∗(t) = α1F0(t) + α2P2φF ∗(t).

As in the proof of Theorem 3.2, this equation can be written as∫
(I +

α2

α1

A∗F ∗AF ∗)ht(t
′)d(F ∗ − F0)(t′) = 0.

Therefore, using the same argument as in the proof of Theorem 3.2, this implies F ∗(t) =

F0(t) for almost all t. By continuity of F0, F ∗(t) = F0(t) for all t. This finishes the proof

of (6.5).

Now we are ready to prove Theorem 3.3. Combining (4.1) and (6.4), we obtain

F̂ ∗n(t)− F̂n(t) =
n1

n
[F ∗n1

(t)− Fn1(t)] +
n2

n
[P ∗n2

φ
F̂ ∗n

(t)− Pn2φF̂n(t)]. (6.6)

First consider

P ∗n2
φ
F̂ ∗n

(t)− Pn2φF̂n(t)] (6.7)

= (P ∗n2
− Pn2)φF0(t) + P [φ

F̂ ∗n
(t)− φ

F̂n
(t)]

+ (P ∗n2
− Pn2)[φ

F̂ ∗n
(t)− φF0(t)] + (Pn2 − P )[φ

F̂ ∗n
(t)− φ

F̂n
(t)].

For the second term on the right side of (6.7), after some straightforward calculation, it

can be verified that

P [φ
F̂ ∗n

(t)] = −K(F̂ ∗n − F0)(t) + F̂ ∗n(t) + o(‖F̂ ∗n − F0‖),
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and

P [φ
F̂n

(t)] = −K(F̂n − F0)(t) + F̂n(t) + o(‖F̂n − F0‖),

where K is the integral operator defined in Theorem 3.2. These two equations combined

with ‖F̂n − F0‖ = Op(n
−1/2) give

P [φ
F̂ ∗n
−φ

F̂n
](t) = −K(F̂ ∗n− F̂n)(t)+ F̂ ∗n(t)− F̂n(t)+o(‖F̂ ∗n− F̂n‖)+op(n

−1/2). (6.8)

Furthermore, by (6.5) and the asymptotic equicontinuity of bootstrapping empirical

measures (Giné and Zinn (1990), Theorem 2.4), we have, for the third and fourth term

on the right side of (6.7),

(P ∗n2
− Pn2)[φ

F̂ ∗n
(t)− φF0(t)] = op(n

−1/2)

and

(Pn2 − P )[φ
F̂ ∗n

(t)− φ
F̂n

(t)] = op(n
−1/2)

uniformly in t. Thus by (6.6), (6.7) and (6.8), and noting that Ṡ0 = α1I + α2K, we have

Ṡ0(F̂ ∗n − F̂n)(t) = α1(F ∗n1
− Fn1)(t) + α2(P ∗n2

− Pn2)φF0(t) + o(‖F̂ ∗n − F̂n‖) + op(n
−1/2).

So the theorem follows from the continuous invertibility of Ṡ0 proved in the proof of

Theorem 3.2 and the result on weak convergence of bootstrapping empirical measures of

Giné and Zinn (1990). 2
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